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Introduction

e The key ingredients in the original turbo-code were a

~

randomly chosen interleaver of a large block length of

65536 bits and a pair of systematic recursive

convolutional codes (SRCC) punctured to a given rate.
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e In this work we show how to construct good
non-random interleavers with a performance at least as
good as the average performance of several randomly
chosen interleavers for a wide range of block lengths
(from a few hundreds of bits to several thousands of
bits). Our proposed interleavers are algebraic in nature
and have very simple generation algorithms. Therefore,
they have several advantages over randomly chosen
interleavers, such as the possibility of analysis and a
simple implementation.
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e We propose two broad classes of interleavers: linear
interleavers and quadratic interleavers. Simulation
results indicate that for rate 1/2 turbo-codes and
information block lengths less than 1000, linear
interleavers are the best choice; otherwise, quadratic
interleavers have better performance.
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The Importance of the Cycle Length of the
Component Code

e It is known that an input sequence of the form
Z.(D)D® = (1+ D7)D® to an SRCC with cycle-length 7
produces a low weight parity sequence. It is possible to
approximately analyze the bit error rate (BER) curve of
a turbo-code by inspecting how low weight parity
sequences in both component codes originate.
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Representations of Interleavers

Let 7 = (z0,21,...,zn—1) € {0,1}. An interleaver Iy
maps T to a sequence y such that 7 is a permutation of
the elements of 7. Let A={0,...,N —1}; Iy can then
be defined by the one-one and onto index mapping
function dz,, : A — A, dz, i+ J, 1,7 € A, and it can be
expressed as an ordered set called the permutation
vector Iy = [dz, (0),dz,(1),...,dzy (N —1)].

Sometimes, a graphical representation of Iy consisting
of N points in an (i, j)-plane allows a better
understanding of the interieaver.

/
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e Example for a block interleaver Bis with index mapping

0 HHDﬁcn bit position

function dg, (i) = 5 + |i/3] (mod 15).
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Linear Interleavers

Block interleavers By of size N = m x n have the index
mapping function

dgy (1) =ni+ |i/m] (mod N), 0<i< N.

To analyze a block interleaver, we use a slightly
different interleaver Ly that “linearizes” the “floor”
function |-| of dg, (7). Its index mapping function is

dey () =ki+v (mod N), 0<7 <N,

where k (the angular coefficient) is a fixed integer
relatively prime to N and v is a fixed integer. We will
refer to both By and Ly as linear interleavers.




\Wma Weight-4 Eccﬁ Sequences: The E:mm«/
Asymptote

e For an interleaver Ly, the congruence tk=7 (mod N)
is always solvable in ¢ with a unique solution. Hence, an
input sequence of the form z;(D) = (1 + D*)D? to Ly
produces the output sequence (1+ D")D?® =7z.(D)D?,
i.e., it produces a low weight parity sequence for the
second component code.

e We now give a new algebraic interpretation of the fact
that a weight-4 input sequence of the form
Tpada = Zi(D) +T;(D)D™ produces low weight parity
sequences in both component codes (producing a
codeword of weight 12 if we use the SRCC of the
original turbo-code). Moreover, each of the N possible

/ cyclic shifts of Tpyq4 Produces the same result. K
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e The following asymptotic BER performance, that is
invariant over the block length N and the angular
coefficient k of a linear interleaver, can then be derived

Py(e|Tpaqq) =~ 2erfc A/\@@w\»\/\cv.

e In the next figure, we show the BER performance of
turbo-codes with several block lengths (from 256 to
16384) using linear interleavers.
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e The optimum value for the angular coefficient k£ of a
linear interleaver of length N has been found to be on
the order of v/N, which distributes the points in the

graphical representation of an interleaver throughout
the (4, j)-plane.

Note also the sensitivity of the BER curves with
respect to the angular coefficients in the next figure.

/
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The Linear Asymptote of “Primitive” /
Turbo-Codes

e Several research groups have noted that using a
“primitive” feedback polynomial for the SRCC helps
lower the “error-floor” of a turbo-code using random
interleavers. We show that a “primitive” turbo-code
using linear interleavers also presents similar beneficial
effects by producing a different linear asymptote:

Py(e[Tpads OF Thady) =
2erfc(4/10Ey/No) + 9/2erfc(1/9.5E/No).

e With a “primitive” feedback polynomial, we can
construct a turbo-code using a linear interleaver with
block length 16384 that is only 1.1dB away from

/ capacity at a BER of 107°, as shown in the next figure.

/




e A

e The SRCC used for the “primitive"” turbo-code is a
16-state (23,35) code, where 23 and 35 denote the
feedback and feedforward polynomials in octal notation.
The “non-primitive” turbo-code shown in the
introduction, which is the original code presented by
Berrou et.al., uses the 16-state (37,21) SRCC.
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Conclusions for Linear Interieavers

Block and linear interleavers have been shown to be
practically equivalent.

Good linear interleavers of block length N have an
angular coefficient on the order of v/N. The optimum
value can be easily determined by computing the
weight spectrum of the turbo-code due to weight-2
input sequences.

We have constructed a powerful non-random
“primitive” turbo-code with block length 16384 that is
only 1.1dB away from capacity at a BER of 107°.
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Quadratic Interleavers

e VWe have seen that linear interleavers can be represented
by the integer points of a linear curve over modular
arithmetic. We have further found a remarkable result
that some quadratic curves also define interleavers. We
have determined that these quadratic interleavers have
properties that are non-linear along the length of the
interleaver. This non-linear behavior, that is shared
with randomly chosen interleavers, is what makes both
quadratic and randomly chosen interleavers well suited
to turbo-codes with large block lengths.




\ Description of the Quadratic Interleavers J

e We first construct a class of interleavers Dy.cny that
have a block length of N. The index mapping function
of Dn.cn

&GZNQZ ”QS _|vO3+H ABOQ ZVQ O MSAZ A”—.v

is defined by the following algorithm.

Algorithm 0.1

( step1: ¢cg=0

§ step 2: cpm =cm-1+km (mod N), 0<m<N,

k an odd constant.




\. Remark: The previous algorithm can also be mxowmmmmy
as a quadratic congruence

k 1
Cm, SCN.T v“ 0 <m < N,k an odd constant. (2)

e Next we generalize of this algorithm as follows.

Algorithm 0.2

.

step 1: compute the permutation vector Dy.cn
using Algorithm 0.1
§ step 2: cyclically shift by h units the result of step 1

step 3: add a constant v (mod N) to each element

f \ of the result of step 2, K




Two special cases have been identified:
Dn.cN = Dn|h—v=0 and Dn.cz2 = Dy |h—v=n/2.

The interleavers Dy.co = @2_:1en2\w are of particular
interest because they have the property that
deinterleaving is implemented using the same function.
This leads to a simplification in the decoding process of
a turbo-code.

\
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Performance of the New Quadratic
Interleavers Compared with Randomly
Chosen Interleavers

e In the next figure, we compare the BER performance of
turbo-codes using quadratic interleavers against the
average performance of turbo-codes using 7 randomly
chosen interleavers. Note that the quadratic
interleavers have performance better than the average
of the randomly chosen interleavers. Moreover, the
Dn.co interleavers have excellent performance. (We
used the (37,21) “non-primitive” SRCC as a
component code in these simulations.)
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Performance of the New Quadratic
Interleavers using “primitive” Turbo-Codes

e In the next figure, we use the new quadratic
interleavers, but this time with a “primitive”
turbo-code. The SRCC is a 16-state (23,35) code.
The BER performance of the codes are very impressive.
The flattening in the BER curve observed in the
“non-primitive” turbo-code case is not observed for
block lengths larger than 256.
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Conclusions for Quadratic Interleavers

e A new class of quadratic interleavers have been
proposed. Quadratic interleavers have non-linear
properties similar to those observed in randomly chosen
interleavers.

e We have shown that turbo-codes using quadratic
interleavers have a BER performance superior to the
average BER performance of turbo-codes using
randomly chosen interleavers.

e Quadratic interleavers have a very simple generation
algorithm. This means a significant advantage over
other known interleaver generation algorithms.
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\ Introduction J

e [terative decoding has become a powerful tool which
enables information transmission at rates close to
capacity. The best example of such an achievement is
turbo-coding, which achieves surprisingly good

performance on a binary-input AWGN channel at low
Signal-to-Noise Ratios (SNR's).

e Another iterative scheme which can achieve good
performance is Bootstrap Hybrid Decoding (BHD),
which uses extra parity checks to improve the likelihood
function used by a sequential decoder, thereby

obtaining better computational behavior compared to
normal sequential decoding.




s B

e This report discusses an extension of the BHD scheme
to Trellis-Coded Modulation (TCM) and compares its
performance to a similar extension using turbo-codes.




\ Sequential Decoding J

e It is well known that there exist large constraint length
convolutional codes yielding very low Bit Error Rates
(BER's) at rates arbitrarily close to capacity when
paired with an optimum decoder. The problem is that

such decoders are not practical due to their large
complexity.

e For such codes, a suboptimum decoding algorithm, like
sequential decoding, is attractive, since its complexity is
almost independent of the constraint length. Its slightly
suboptimum performance can be overcome by using a
larger constraint length code, and therefore a BER
close to zero can be achieved.
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e The problem with sequential decoding is its
probabilistic behavior, since its computational load
depends on the noise and is therefore a random
variable. In particular, for rates above the
computational cut-off rate Rq, its computational load
has an infinite expected value, and hence Ro is
considered the practical limit for sequential decoding.




\ The Bootstrap Hybrid Decoding Idea /

e BHD, however, has a larger effective cut-off rate, and
thus allows sequential decoding to operate at rates
closer to capacity. It works by taking a set of m — 1
codewords from a convolutional code and adding
redundancy in the form of a new codeword such that
the sum of all m codewords over the binary field GF(2)
is the all-zero sequence. This redundancy can then be
used at the decoder to improve the sequential
decoder’s likelihood function.

e The decoding scheme becomes iterative by using the
estimated sequences provided by the sequential decoder
to update the likelihood function adjustment, since,

with high probability, these estimates are correct.




\ Generalizing BHD J

e The BHD idea can be applied to both BPSK and larger
signal constellations. However, the metric adjustment
has been derived only for the BPSK case, where it
depends on one sequence, called the channel state
stream, calculated 103 all the received sequences.

e For larger constellations, the adjustment depends on
how the redundancy is introduced. Assuming a TCM
scheme using an 8-PSK constellation and a rate 2/3
convolutional code, the extra redundant sequence can
be derived by treating the codewords from the
convolutional code as vectors of binary 3-tuples and
adding them componentwise over GF(8). The resulting
sequence is still a codeword, and therefore can be

/ mapped exactly like the other codewords. \
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e For the sake of exposition, we can view the m
codewords as a matrix, where each row is a codeword
and each codeword is a sequence of symbols from
GF(8). If a codeword has L branches (including the
tail), then the above matrix has dimension m x L.

e Using this representation, an m x L matrix A with

elements from GF(8) represents a valid set of m
codewords if, and only if, the sum of the m rows is
identically zero. Moreover, if we partition the set of
rows into two subsets and compute the sum of the
rows in each of these subsets, the above condition
implies that the two sums are equal.

/
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e We now assume, without loss of generality, that the
last [ rows have been decoded, and hence that
m' =m — [ rows remain to be decoded. Then, by
partitioning the set of rows into two subsets, one
containing the first m’ rows and the other containing
the | decoded rows, the above condition implies that
the sum of the rows in the first subset is equal to the
sum of rows in the second subset.

e Call the decoded subset sum, which is L symbols long,
the channel state stream S = (51,52,...,S5L), and
assume that row m' is next to be decoded.
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o If xms\v = (Zi1,%i2,...,Tim) denotes the vector
consisting of the first m’ elements of the i-th column
of A, and %MS\V = (¥i,1,¥i,2,---,Yi,m’) IS the corresponding
received vector, then the likelihood function for the
m’-th row should be

)l e, Q.
y&ASJHEmE : _&fﬁ;,msvl.mv i1=1...,L (1)

where R is the code rate in bits per channel use.




L

\ o Let SAS\V. s € GF(8), be the set of all vectors J

x(™) = (z1,...,2m) over GF(8) such that Yz, = s,
where the sum is carried out over GF(8). Then the sets

v{m) s ¢ GF(8), form a partition of the set of all

m’-tuples over GF(8), and each set has cardinality
g(m'~1)

e We then have

I

S p™) | xm)yp(xm))

m/! (m’)
x ( vma\ms.

p(y™) | S;)

1 m
= gm-1) MU —»—@ASL. | z5),

/ (m’) 9=1
x(m Vma\.m.s. J

since the channel is memoryless.
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e The probability ﬁ@ms\v | z; m,S;) can be found in a
similar way by noting that if T; m' IS given, then the set
of unknown z; ; in the i-th column is (i1, Timr—1)
and the channel state is S; ® z; ,»». This gives

(m/

EG@

) _ Lim', rm_sv

2.

p(y™ ) | x7 D g, p(x ™ D)

.m.a..@am.sx
1
-1
 pWime | Time) ™
- g(m’—2) MU : p(¥i,5 | ;)
NAS\I:ma\%MMHI.C\ j=1

i,m
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e Defining DMH;_ s € GF(8), as

AT = N T | =)

x(m") eyim) 7=1

allows us to rewrite the above probabilities as,

\ A™)
(m”) N o 1,5;
EAVQ _ %sv T mAS\IC
and
m/' ﬁ@xs,ﬂ:\ _ Hs.,jiv m'—1
p(ys™ ) | Tim, Si) = Al"S o

(2)
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e Let now C be a subset of GF(8) and C be its
complement, and consider the following product,

/

11D pwisle) =) plyiila) |- (4)

=1 \zeC zeC

e This product can be expanded into the following sum,

/

> D> (pfEem ) TTpy ;[ 25),  (5)
x1 EGF(8) z 1 EGF(8) j=1
where f(z1,...,zm) 2 f(x™)) is either 0 or 1.

N _/
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e Notice that every vector x(™) = (z1,...,z,,/) in the set

of all m’-tuples over GF(8) is represented once, and only
once, in the above sum, and that the corresponding
sign will be negative (that is, f(x(™") =1) if, and only
if, an odd number of the z;'s are in C (f(x(™)) =0
otherwise).

o If C = {(000),c1,co,c1 ®c2}, Where ¢; and ¢y are distinct
non-zero elements of GF(8), is a rate 2/3 binary linear

block code, then C is its non-zero coset and has the
property that the sum of any even number of elements

z; € C isin C, and the sum of any odd number of

elements z; € C' is in C.




\ e In this case, f(x(™)) =0 if, and only if, MU.NH z; € C. Hﬁ/
U denotes the set of all m’-tuples s over GF(8) such
that MASHV z; € C then (5) can be rewritten as

MMU _:va@fg_ z5) MMU M p(¥i,j | ;)

x(meyu =1 x(m") ¢y j=1

e But from the definition of is\v we have

U = Smﬂmw vim) vy a\msmw\nvw_ and therefore the
above sum becomes

A N@BOOV + DM:QH + Dwﬁow Ds ,C1 @ouvl
ADS T D T Ds ,e1@Dco T Ds mu@ﬁ@owv A@V

1,€1 ) mp@oy

where e; is the coset leader.
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e There are seven different rate 2/3 codes that can be
chosen, namely,

Code C1 Co Code C1 Co
Ch 001 010 Ch 010 101
Co 001 100 Cs 100 011
Cs 001 110 C~ 011 110
Cy 010 100

each yielding a different value for (6). Call each of

these values m?i l=1,...,7. An additional value can
be obtained by making C = GF(8) in (4) (i.e.,

F(xmD) =0 for all x(™"). Call this sum mAS v.

\_ \
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We can then write the following linear system of equations,

(11 1 1 1 1 1 1\ /(AR [(EE
1 1 1 1 -1 -1 -1 -1 ||al E)

1 1 -1 -1 1 1 -1 -1 ||a%p) &wv
11 -1 -1 -1 -1 1 1 [[alp) | | B

1 -1 1 -1 1 -1 1 -1 [|al) | |ED |
1 -1 1 -1 -1 1 -1 1 [|al EC)

1 1 -1 -1 1 -1 -1 1 [[af) EC)
\L -1 -1 1 -1 1 1 -1/\alm ] \gm
where

(000) £ 0,(001) 21,...,(111) 2




The above system can be written as

QA; = E;.

/

The vector E; can be found using (4) and so, since Q is
invertible, A; is known and can be used to compute (2)

and (3), and therefore the likelihood

function (1) is

(m'—1)

&umﬂ“@a.«..s\

+3 - R.

Ai(m') = log(Yi,m | Tims) + log

ALS)

‘The generalization to the j-th stream is
straightforward, with the likelihood function being

A
1,54

IHV
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e If the j-th stream is successfully decoded, then the
channel state stream is updated,

A%H @Ru,mg%w Dz, .. 5L @Hb&.vv

and the vectors E;, i =1,...,L, are recomputed. This
makes the whole process iterative.

e The decoding process is finished when either all
streams have been successfully decoded, or when some
computational limit is exceeded, in which case the
frame is declared an erasure and whatever streams were
decoded are released to the user.




\

~

An extension of the Bootstrap Hybrid Decoding scheme
to TCM was presented, detailing how to obtain the

metric adjustments for the sequential decoders, as well
as their updates based on successful decoder estimates.

Conclusions

A simulation program is being developed to assess the
performance of the BHD/TCM scheme and to compare
it with the performance of a similar scheme using
turbo-codes.

Analysis of the computational behavior is also being

performed to determine the theoretical limits of this
scheme.

20




Part III

Some new Turbo coding schemes

Jiali He and Daniel J. Costello, Jr.

University of Notre Dame

December 1, 1997




-

* In our previous report, we introduced several concatenation

schemes using Turbo codes as the inner code in an attempt to
achieve all or some of the following objectives: (1) eliminate (or
reduce) the error floor; (2) achieve similar performance with less

decoding effort; and (3) achieve similar performance with less
decoding delay.

These schemes included: using an outer RS code or BCH code to
correct the small number of errors after Turbo decoding; using an
interleaver to spread the symbol errors (for an outer RS code) or
bit errors (for an outer BCH code) in one block to several blocks,
thus making the errors more random and generating more correct-
able blocks; using the soft-output information from the inner
decoder to declare some symbols or bits as erasures for an outer
errors and erasures decoder; using feedback from the outer
decoder to help the inner Turbo decoder; and using an outer CRC
for ‘data integrity verification’ and to reduce average decoding
complexity.
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 However, these schemes with outer block codes have several disad-
vantages:

--The outer decoder begins decoding only after the inner Turbo
code has finished several decoding iterations, i.e., most of the time,
the outer decoder is idle.

--If the outer decoder uses a hard-decision decoding algorithm, or
errors and erasures decoding, the soft information from the inner
decoder output is not fully utilized.

--The Turbo decoder output is bursty, so the number of errors

is often beyond the error correcting capability of the outer
code.

* It would be desirable to have a concatenation scheme in which the
outer decoder fully exploits the soft information from the inner

decoder and provides positive feedback to the inner decoder through-
out the entire iterative decoding process.




« Convolutional outer codes can make full use of the soft information
from the inner decoder and interact fully with the inner Turbo
codes through the iterative decoding process, and thus can be used

as the outer code. This results in a combination of serial and parallel
concatenation.

e Parallel concatenated codes are designed for near-capacity perfor-
mance at moderate BER’s, while serial concatenated codes are
designed for almost error-free performance. A proper combination of

serial and parallel concatenation should maintain the advantages of
both.

e It is important in such a hybrid coding scheme that the Turbo
decoding principle (i.e., iterative decoding) be applied so that the
outer decoder works together with the inner decoder.




* The new hybrid encoding structure:

rv CC, - Y2

* Exact weight distributions at short block lengths are calculated to
examine the potential of this new coding schemes.
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* Using a rate 3/4 outer code and a rate 2/3 inner Turbo code as an example,
we obtained the following weight distribution for very short block length
(N=27). (The outer code is 8-state and non-recursive, and the Turbo code
is the original ‘non-primitive’ (37,21) code with additional puncturing.)

Weight Multiplicity
0 1

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 1

9 3

10 3

11 11

12 20

13 86

14 211
15 614
16 1727
17 4442
18 11045
19 25575
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* Weight distribution of the hybrid coding scheme. (Parameters are
same as the previous page except that the inner code is the ‘primitive’
(23, 35) Turbo code.)

Weight Multiplicity
0 1

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 3

11 6

12 14

13 60

14 150
15 452
16 1356
17 3507
18 8839
19 21247
20 48161
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* Weight distribution of the standard rate 1/2 Turbo code (N=27).
(The component code is the original ‘non-primitive’ (37,21) code.)

Weight Multiplicity
0 1

1 0

2 0

3 0

4 1

5 1

6 6

7 5

8 18

9 35

10 100

11 203

12 587

13 1352
14 3404
15 7938
16 19219
17 42943
18 91451
19 187289
20 362193
21 666783
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 Weight distribution of the standard rate 1/2 Turbo code. (N=27, but
now the component code is the ‘primitive’ (23,35) code.)

Weight Multiplicity

0o ~Joy Ul i WD PP O
O R OO OO O

\O
=
S

19

53

142
364
943
2488
6458
15889
37458
82773
174154
345741
649011
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As can be seen from comparing the two weight distributions, the
hybrid structure has a ‘thinner’ distance spectrum and a larger min-
imum distance, as expected, since the outer code ‘filters out’ the bad
input sequences for the inner Turbo code.

It is expected that, at longer block lengths, this hybrid coding structure
will have the characteristics of both the parallel structure (a ‘thin’
overall distance spectrum) and the serial structure (a much larger
minimum distance).

In all examples, the weight distributions shown are ‘averaged’ over
several random interleavers.

Several decoding structures based on the Turbo decoding principle
have been proposed.

10
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* A possible decoding structure for the hybrid coding scheme:

DEC1

Y2

DEC2

De

I,

1\

I,

:-_.

!

:-_ 1

!

DEC3

L

L » d

\
Channel Estimate

Decision




-~

~

 Another possible decoding structure for the hybrid coding
scheme(DEC?2 and DEC3 can work simultaneously):

L

y+—{ DECI y;—| DEC2 | DEC3 |, 4

—— L I -1 >
X _ Decision
Channel Estimate
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* In our previous report, we investigated the serial concatenation of two
convolutional codes.

* We have now extended this to a serial concatenation of three convolu-
tional codes. Due to the serial structure, this coding scheme should give
very good performance and may be useful in very low BER applica-

tions.

* The encoding structure (only the outer code is terminated):

cC,

CCy




s

* Weight distribution for a serial concatenation of three codes, with rates
1/2, 2/3, and 3/4 respectively (the overall rate is 1/4 and N=27).
(The codes have 4, 4, and 8 states, and are all non-recursive.)

Weight Multiplicity
0 1

1 0

2 0

26 0

27 0

28 2

29 2

30 10

31 18

32 58

33 177
34 411
35 933
36 2069
37 4664
38 9402
39 18661
40 35545
41 66176

/
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* Weight distribution of a parallel concatenation of three convolutional
codes (with overall rate 1/4 and N= 27). (The component codes are the
original ‘non-primitive’ (37,21) recursive codes.)

Weight
0
1
2

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Multiplicity
1
0
0

MNP PRPOR, WO O

(O ) NNV S I o i %2
> O ] O O O

/
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* Weight distribution of a parallel concatenation of three convolutional
codes (with overall rate 1/4 and N=27). (The component codes are the
‘primitive’ (23,35) recursive codes.)

Weight Multiplicity
0 1

1 0

2 0
20 0
21 0
22 1
23 4
24 8
25 4
26 7
27 14
28 20
29 24
30 55
31 95
32 155
33 279
34 411
35 789

N




\

 Weight distribution of a serial concatenation of two convolutional
codes, with rates 1/2 and 1/2, respectively (the overall rate is 1/4 and
N=27). (Both codes are 8-state and non-recursive.)

Weight
0
1
2

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Multiplicity
1
0
0

oonunmWwoPRrPkE Ok o o:

0 v NP W
=D o R

~
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 Compared to the schemes with three parallel concatenated codes
and two serial concatenated codes, the weight distribution of the
three serial concatenated codes is very encouraging, especially con-
sidering the fact that the three component codes are quite simple,
with 4, 4, and 8 states, respectively. The best rate 1/4 convolutional

codes with free distance around 28, for example, have 29210 gtates.

e It has been observed that, at very short block lengths, the weight
distribution of the triple serial concatenation scheme with two
recursive inner codes is a little worse than with the equivalent non-
recursive inner codes. However, at larger block lengths, recursive
codes should be used to maximize the ‘interleaver gain’.
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» A possible decoding structure for the serial concatenation of three

codes:

— | DEC3

" DEC2 |

| DECI

d

II'
Decision

N




Summary

In an attempt to lower the error floor of Turbo codes, we have proposed a
hybrid concatenated coding scheme with an outer convolutional code and
an inner Turbo code. Compared to standard Turbo codes, the weight dis-
tribution of this hybrid scheme is superior.

Also, the weight distribution of a ftriple serial concatenation is very
encouraging, at least compared to a parallel concatenation of three codes
and a serial concatenation of two codes with the same overall rate and
similar decoding complexity.

Although the weight distributions calculated are only for very short block
lengths, we expect these two new coding schemes will maintain their
advantage for larger block lengths. Analysis will be required to determine
the behavior of these codes for large block lengths.

Several decoding structures for these coding schemes have been proposed
and are being investigated. Iterative decoding is employed in such a way
that the component codes interact fully with each other.

/
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* Most research has focused on binary coherent modulation
* Little activity in applying Turbo coding techniques to
M-ary non-coherent modulation

* Turbo coding with differentially coherent or non-coherent modulation
could provide an attractive modulation/coding solution for many
systems and applications

* Phase acquisition and tracking not required
* Robust fading performance with channel interleaving

* Emphasis is on modulation / Turbo coding schemes characterized by
* Robustness in Rayleigh fading
* SOVA decoding of constituent codes
* Power and bandwidth efficiency
e Small interleaver length and low number of iterations
* Packet communications
* M-ary DPSK and FSK with binary Turbo coding
* Constant envelope for hard limited channels




Modulation / Coding / Channel Parameters

* M-ary DPSK and FSK for M =2, 4, and 8
* Throughput of 0.33 to 1.50 bits / symbol
* Channel interleaving for fading channel
* R = 1/2 systematic recursive convolutional constituent codes
*R=13PCCC
* R =1/2 PCCC (constituent codes are punctured to R = 2/3)
* 4,8, and 16 states, G = (1, h, / h)
R=1/2 CC R=2/3 CC (punctured)
m h, h, d, d, d... h, h, d, d, d

=0 3 =3 —free

2 7 S 6 5 S 7 S 4 3 3
3 15 17 8 7 6 13 15 S 4 4
4 31 37 12 8 6 23 37 7 4 4

* Additive White Gaussian Noise (AWGN); non-fading
* Additive White Gaussian Noise (AWGN); fading
* Jakes Rayleigh fading model; slow (t, = 50 symbols) and fast
fading (t, = 5 symbols)
» Small data packet lengths
* Interleaver sizes of 511, 1023, 2047 bits




Parallel Concatenated Convolutional Code

Structure (R = 1/3 example)

INTERLEAVER
OF LENGTHN

7\
X /I \
-\
| 1
roo |
R = 1/2 SYSTEMATIC I _ R=1/3
> CONVOLUTIONAL >
ENCODER _  PCCC
Y1 I
I_.I.v— |
PARITY CHECK BITS FROM ENCODER 1 \ \
\ 7

PARITY CHECK BITS FROM ENCODER 2
Y2

R = 1/2 SYSTEMATIC

- CONVOLUTIONAL

ENCODER




Y2

Turbo Decoder Structure

DECODER 1
(SOVA)

DEINTERLEAVER
(MLSG) ¢
F_OG* F_A%v
INTERLEAVER
——®  MLsG) ———
INTERLEAVER _
P (MLSG) ‘

Demodulator
Outputs

Decoded —

Data

SOVA = Soft Output Viterbi Algorithm

DECODER 2
(SOVA)

DEINTERLEAVER |-f——

(MLSG)

FNANv*

MLSG = Maximal Length Sequence Generator




R=1/3 PCCC Showing Code Termination

\v ,
- &

INTERLEAVER h, =37 and h, = 21 octal




Receiver Structure and Channel Model

AWGN
n(t)

S(t) IIVWIV%I

R(t)

Rayleigh
Fading

t

——= @ Joat
.nww 0

2 sin(o,t)

t

1 SS
= Joat

$SQ

— > Omm

)\mloomﬁeoc

s(t) = V2EJ/T, sin(oct + 2 nf,t + @, + O)

and n(t) = V2 ( n(t) sin(wct) + ng(t) cos(wct) )

ts = sample time = T_/8

T = symbol time

E; = energy / symbol

¢ = radian carrier frequency
fx = M-ary FSK symbol tone
®, = M-ary DPSK symbol phase
O = initial phase offset




0 —
v
7 —
a P> - Qlq = 1 Q4 —X N=0,
me 0 Ox

7 > D, W
> >, s + Q. Q,, g%

M-ary DPSK Modulation / Demodulation

M-ary DPSK Modulation (f, = 0)

s(t) = 4Mmm\._.m sin(oct + @, + 0), O, =D ,+N2t/M  where

K = symbol time, k=0, 1, 2, ....
N = transmitted symbol, N =0, 1, ..., M-1

M-ary DPSK Demodulation

cos(2nN/M)
_x . __3 Dot Product

Ox ’ 0_3 Cross Product sin(2rN/M)

for

1, ..., M-1




M-ary DPSK Demodulated

Symbol to Binary Soft Data Mapping
Coded bits b, ;..b, where p = log,(M) are mapped to symbol N using Gray encoding

2
M = 8 Example 3
101 001
111
000
4
011
010
5

Soft Binary Data 6

—UN = —SQXA.%.. \5. ‘<e .<mv U._ = _<_NXA\<9 ..5. <n_ <.\v
- _<_NXA~<~. <u, \<m. <.\v - _,\_NXA\.K? <§ _.Km. <mv

Differential Phase N2z /M
=N2r/8forM=8

0

AR Symbol N

Binary representation
b, b, b,

b, = _<_NXA<9 <m_ w<m, J\uv
- —,\_QXA‘<‘. <~. ‘<u. <nv




M-ary FSK Modulation / Demodulation

M-ary FSK Modulation (®, = 0)

s(t) = V2E/T, sin(wct + 2 nf,t + ©) , f, = -(M-1)(1/(2T,)) + N(1/T,)

K = symbol time, k=0, 1, 2, ....
N = transmitted symbol, N =0, 1, ..., M-1

The Yy are mapped to
soft binary data as

M-ary FSK Demodulation

7 in M-ary DPSK
— g D ()2
lss COMPLEX 0
MULTIPLY Yn for
Iv N
Q,, — 3 ()2 N=0,1,.., M-1
» 0

exp(j2rnf,mt,),n=0,1,..,N; m=0,1,..,7

?uOivcmo:m_?mn:msnmmmmcn:uc,._.:._s..._
t.; = sample time = T_/8




BEP

4-ary FSK, R=1/2, 1023 bit packet, m=2;
2,4,6,8 iterations
1.00E+00

1.00E-02 +

| . ——uncoded
i s ~—i—2 iterations
1.00E-03 : / —&— 4 iterations

—@— 6 iterations
——a—§ iterations

1.00E-04

| é
/\

1.00E-05

1.00E-06
3.00 4.00 5.00 6.00 7.00 8.00
Eb/No (dB)




BEP

8-ary FSK and DPSK, R=1/2, 511 and 2047 bit packets, 6 iterations, m=2

1.00E+00 ¢

1.00E-01 +

1.00E-02 ¢

1.00E-03 +

1.00E-04 1

1.00E-05 1

™~

1.00E-06

3.00

4.00

5.00

Eb/No (dB)

6.00

7.00

8.00

—&—FSK, 511 bit
—l—FSK, 2047 bit
—&—DPSK, 511 bit
—@— DPSK, 2047 bit




BEP

1.00E+00

Channel Interleaving with fading; 2-ary FSK and DPSK, R=1/2, 1023 bit packets, 6 iterations, m=2

1.00E-01 ¥

1.00E-02

/

1.00E-03 1

1.00E-04 1

1.00E-05 +

// ~
T

1.00E-06

N

6.00

8.00

10.00 12.00
Eb/No (dB)

14.00

—&—FSK, no chan int
—&—FSK, chan int
—&— DPSK, no chan int
—@—DPSK, chan int




BEP

1.00E+00

1.00E-01

1.00E-02 -

1.00E-03

1.00E-04

1.00E-05

1.00E-06

M-ary FSK and DPSK, M=4,8; R=1/2, 2047 bit packets, 6 iterations, m=3, AWGN

X/

—&—4-ary FSK, AWGN
——8-ary FSK, AWGN
—k—4-ary DPSK, AWGN
—X~8-ary DPSK, AWGN

/.4/
N
j

4.5

5 55 8
Eb/No (dB)




BEP

1.00E+00

M-ary FSK and DPSK, M=4,8; R=1/2, 2047 bit packets, 6 iterations, m=3, Slow tading

1.00E-01

1.00E-02

1.00E-03

~—&— 4-ary DPSK, fading
—i—-8-ary DPSK, fading
—&—4-ary FSK, fading
—&—8-ary FSK, fading

1.00E-04

1.00E-05

6.00

7.00

8.00

9.00 10.00 11.00
Eb/No (dB)



Conclusions

* Turbo coding using iterative SOVA decoding and M-ary differentially
coherent or non-coherent modulation can provide an effective coding /
modulation solution

* Energy efficient with relatively simple SOVA decoding and small
packet lengths, depending on BEP required

* Low number of decoding iterations required

* Robustness in fading with channel interleaving

Future Investigations

* Apply Trellis Coding in addition to Turbo Coding
* Decoding operates on soft symbols versus soft binary data
* Use R = 2/3 constituent codes versus punctured R = 1/2 codes
* Can provide larger d, and d,,,,
* Formulate error probability bounds for AWGN and fading
* SOVA performance at low signal / noise ratios
* Use of simplified MAP decoding versus SOVA




